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Abstract. 
Average nuclear level densities close to the nuclear binding energy in 56Fe and 57Fe are extracted from primary y-ray 

spectra. Thermal properties of 56Fe are studied within the statistical canonical ensemble. The experimental heat capacity is 
compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach. 

INTRODUCTION 

Most experimental information on nuclear level densities comes from counting discrete levels at low excitations or 
from neutron-resonance spacing data at the neutron binding energy. Due to a rapid increase in the number of levels with 
increasing excitation energy, individual levels cannot be resolved experimentally. Therefore, it becomes impossible 
to measure the level density at high excitation energies, using common nuclear spectroscopy techniques. Recently, 
the Oslo Cyclotron group has developed a new method to extract average level densities up close to the neutron 
binding energy from primary y rays [ 11. This method also provides a simultaneous determination of the y-ray strength 
function [ 11. The method has been successfully applied to study several rare-earth nuclei where the level density is 
high [ 1,2,3,4,5]. In the present work we explore a lighter mass region, i.e. "Fe and 57Fe isotopes which are close to 
a closed shell where strong single-particle effects are expected. 

The nuclear level density is closely related to the thermodynamics of the nucleus. In fact, Bethe's pioneering work 
[6] to describe the level densities was based on calculating the entropy of the nucleus from the Fermi statistics. 
Recently, thermodynamic properties of several iron isotopes have been studied by Liu and Alhassid within the 
interacting shell model using the complete (pf + Ogg12)-shell [7]. A signature of a pairing phase transition in the 
heat capacity is predicted by the calculations in the even-mass iron isotopes. The experimental and theoretical results 
will be compared. 

EXPERIMENTAL DETAILS 

The experiment was performed at the Oslo Cyclotron Laboratory with a 45-MeV 3He beam on a self-supported 57Fe 
target, which was 94.7% enriched and 3.38 mg/cm2 thick. The (3He,cr) and (3He?He') reactions in particular were 
studied. The reaction products are measured by the CACTUS multidetector array, which includes 8 Si(Li) particle 
telescopes and 28 NaI(T1) detectors. The y rays are measured in coincidence with the particles, which allows one to 
deduce the excitation energy of the final nucleus from reaction kinematics. The data were sorted into a two-dimensional 
excitation energy versus y-ray energy matrix. Raw y-ray spectra for 5-MeV excitations are shown at the top and bottom 
left panels in Fig. 1. Each excitation energy bin is 238-keV broad. The measured y-ray spectra are then unfolded using 
the detector response functions in order to obtain the true y-ray energy distribution [SI (see middle panel in Fig. 1). 
The primary y-ray spectrum for each excitation energy bin is then extracted using a subtraction method developed by 
the Oslo Cyclotron group (see right panel in Fig. 1). 
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FIGURE 1. Raw (left), unfolded (middle), and primary (right) y-ray spectra at 5 MeV of excitation energy for "Fe and 57Fe. 

The details of the subtraction method are given in Ref. [9] .  The key assumption underlying the subtraction method 
is that the y decay pattern from any excitation energy bin is independent of the population mechanism of the states 
within the bin, e.g. direct population by a nuclear reaction, or population in a nuclear reaction after one or several y 
rays. 
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FIGURE 2. Experimental primary yray matrix for 56Fe. 
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FIGURE 3. The experimental (data points) and calculated (solid line) primary y-ray spectra for different excitation energies in 
56Fe. 

METHOD 

The method to extract the level density and y-ray strength function simultaneously relies on the primary y-ray spectra 
[l]. Once the primary y-ray spectrum is normalized at each excitation energy, it represents y-ray decay probability. 
Fig. 2 displays the normalized primary y-ray matrix. Each square box represents one matrix element, and gives the 
probability of emitting a y ray from the corresponding excitation energy. The matrix elements below E, = 4 MeV 
of excitation energy are eliminated from the matrix since thermalization time might compete with the half life of the 
excited state, and therefore the reactions are likely to be more direct than compound. Furthermore, the matrix elements 
below E, = 1.5 MeV y-ray energy are excluded due to ADC threshold walk, and bad timing properties of low-energy 
y rays. There are also some problems associated with the subtraction method in obtaining the primary y-ray spectra 
for low-energy y rays. For example, the yrast y rays acE us~a~Iy~.~--1yRLYubtracted, and any change in the spin 
population distribution between high and low EXCITATIONS is not accounted for in the subtraction method. 

The primary y-ray matrix is fxtxrzed according to the Axel-Brink hypothesis [lm whc.k&2tes that the 
probability of emitting a y ray from an excited state is proportional to tne y-ray transmission coeffic- 
level density at the final energy 

P(J%,EI)  f w , ) P ( &  -E,). (1) 

The final energy is given by the initial excitation energy minus the emitted -pray energy. Once the primary y-ray 
matrix is factorized using the Axel-Brink hypothesis, the y-ray transmission coefficient is a function only of the y-ray 
energy, and the level density IS atuncr?+,s. - 1 % ~  of the final excitation energy. This is the physical input in the method. 
If one writes out Eq. 1 for each primary y-ray matrix eiemmi '+ i s  clear that the vertical matrix elements depend on 
the function F at the same y-ray energy. Similarly, the matrix elements 3 45O will depend on the function p at the 
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same final excitation energy. Both F and p are unknown a priori. In order to find all of the F's and all of the p's, which 
will be referred to as one solution that describes the primary y-ray matrix, we apply a least x2 method. In Fig. 3, both 
experimental and calculated primary y-ray spectrum are plotted for several excitation-energy bins. The theoretical 
spectra, obtained by x2 minimization, reproduce the experimental spectra very well which justifies the assumption 
that the primary y-ray spectrum can be factorized according to the Axel-Brink hypothesis. 

It has been shown in Ref. [I] that one can find all other solutions with equal x2 by the transformation equations 

where A, B, and a are free parameters, F and p are the solutions obtained from the least x2 method, and F and i j  are 
the other solutions that can be obtained by giving different values to the free parameters A,  B, and a. Now, using the 
transformation equations and the available known data, one can determine the most physical solution. We normalize the 
level density using the known discrete levels at low excitation, and the neutron-resonance spacing data at the binding 
energy. The normalization of the level density is performed by fitting the ratio p / p  with the transformation function 
Aexp(a(E, - ET)). Since there are no available neutron resonance data for the 5sFe isotope, we normalize the level 
density in 56Fe using information from the neighboring 57Fe isotope. This is done as follows. A normalization factor 
is obtained by comparing the level density in 57Fe from the neutron-resonance spacing data with the one calculated 
from the Fermi gas model using von Egidy's parameterization [ 121. This factor is then applied to the calculated Fermi 
gas level density using von Egidy's parameterization at the neutron binding energy in 56Fe in order to normalize the 
level density at high energies. 

In the discussion that follows we concentrate on the level densities and some thermodynamical quantities that will 
be determined from the level density. 

EXPERIMENTAL RESULTS 

Level Densities in 56Fe and 57Fe 

The normalized level densities for 56Fe and 57Fe are shown in Fig. 4. The empty triangle is the level density at the 
binding energy for the 57Fe isotope, and is obtained from the neutron-resonance spacing data. The fact that the level 
density in 57Fe is higher than the one in 56Fe is a result of the unpaired neutron in 57Fe. The level densities for both 
iron isotopes show a step-like behavior. First consider 5sFe. The first bump corresponds to the first excited 2+ state 
at 847 keV. The 4+ state appears at around 2 MeV. Then one sees a plateau followed by a step at around 3 MeV. 
This step structure is a signature for the first pair breaking in 5sFe, and can be compared with the predicted pairing 
gap parameter. We have calculated the pairing gap parameter using two different approaches, one is taken from Bohr 
and Mottelson [13], which uses a four-mass indicator, and the other is taken from Dobaczewski et ai. [14], which 
uses a three-mass indicator. Ref. [ 141 has shown that three-mass indicator is able to separate pairing contribution and 
single-particle contribution in the odd-even mass staggering, and that the higher-order indicators mix the pairing and 
the single-particle contributions to the odd-even mass staggering. Since only the pairing contribution is of interest, 
the pairing gap parameters calculated from Ref. [ 141 are adopted in Fig. 4. The calculated pairing gap parameters are 
listed in Table 1 for both isotopes. - 

TABLE 1. The pairing gap parameters calculated from Dobaczewski 
et al. [14] and Bohr and Mottelson approaches [13]. 

I AdMeV) - 57Fe A,, + AdMeV) - "Fe 
~ ~~ 

Dobaczewski et aI. 0.82 2.27 
Bohr and Mottelson I 1.27 2.93 

The first pair breaking is expected to be at Ap + A, in 56Fe. The calculated Ap + A, is approximately 0.5 MeV 
below the energy of the first step at around 3 MeV. This is within reasonable agreement with the interpretation of the 
first pair breaking. Because one has to expend, in addition to the pairing energy, an energy in the order of E ,  where 6 
is the single-particle energy, in order to break one pair and excite one of the nucleons into the lowest single-particle 
state. The step structure is washed out with increasing excitation energy. 
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FIGURE 4. Level densities for the 56Fe and 57Fe isotopes. 

The discrete structure at low excitation in 57Fe is not as pronounced as in the 56Fe case. Again this is because of the 
unpaired neutron in 57Fe. It is commonly believed that neighboring odd-odd, odd-even, and even-even isotopes reveal 
the same level density if a proper shift is applied to the excitation energy. The step structure at around 2 MeV in 57Fe 
would then correspond to the step observed at around 3 MeV in 56Fe, taking into account an energy shift of about 1 
MeV. Therefore, the steep increase at 2 MeV is interpreted as the first pair breaking, accordingly. 

Thermodynamical Properties 

Depending on the system under study, one can choose among different kinds of ensembles in order to derive 
thermodynamical quantities of the system. For small systems like a nucleus, it is difficult to chose an appropriate 
ensemble. The reason is the following. Although in general caloric curves derived within the microcanonical and 
canonical ensembles give the same result in the thermodynamic limit, the two caloric curves are different from 
each other for small systems. Furthermore, temperatures and heat capacities sometimes give negative values when 
derived within the microcanonical ensemble [3,5]. On the other hand, the canonical ensemble averages too much over 
structural changes. 

We derive thermodynamical properties of 56Fe within the canonical ensemble. The canonical ensemble describes a 
system whose temperature is determined through contact with a heat reservoir. One defines the partition function in 
the canonical ensemble 

Z ( T )  = R(E)e-E'TdE, ( 3 )  Irn 
as the volume in phase space occupied by the canonical ensemble. R(E) is the multiplicity of states, and is proportional 
to the level density. The partition function is simply the Laplace transform of the multiplicity of states. From the 
basic principle of statistical mechanics, once the partition function is known, all thermodynamic properties can be 
determined. 

It should be emphasized that we do not measure the temperature of the nucleus, but we measure instead the 
multiplicity of states, and then study how the nucleus behaves when it is connected to a heat bath. One can do this 
investigation with the probability density function, which is the probability of the system having energy E for a given 
temperature T, and is given by 
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FIGURE 5. Probability density function for 56Fe. 

In Fig. 5 the probability density function is shown for temperatures T = 1 MeV and T = 1.5 MeV. Clearly, the 
probability distribution is mostly weighted by the experimental data for T < 1 MeV temperature. For increasing 
temperatures, the energy of the system increases; therefore, the probability density function depends more and more 
on the extrapolated level density. The integral in the partition function is defined from zero to infinity. However, our 
experimental level density goes up to around the binding energy. Therefore, the level density is extrapolated from 
about 10 MeV up to 150-MeV excitation energy using the Fermi gas model. The 150-MeV upper limit is sufficiently 
high for the integrand in Eq. 3 to vanish. 

One should also notice in Fig. 5 that the energy of the system has a broad distribution for a given temperature, 
since we are dealing with small systems. Significant averaging over structural changes in the canonical ensemble is 
caused by the damping exponential in the calculation of the partition function. In the thermodynamic limit, or for large 
systems, the energy distribution becomes similar to a b function from which the energy of the system can be defined 
quite well. 

Alternatively, the relation between the energy and the temperature of the system can be studied using 

d lnZ(T)  
dT ’ E = T ~  ( 5 )  

which is called the caloric curve. The experimental caloric curve is shown in Fig. 6. Again one has to keep in mind that 
the caloric curve is only an approximation, since the energy of the system is quite uncertain for a given temperature 
(see Fig. 5) .  

Next, we would like to study the heat capacity in 56Fe. The heat capacity is given by 

..=(E) V 1 

where E is the average energy of the system determined by the caloric curve (see Fig. 6). The heat capacity is a 
measure of the degrees of freedom of the nucleus. The heat capacity in several iron isotopes has been calculated by 
Liu and Alhassid using the shell model Monte Carlo (SMMC) approach with a complete (pf + Og9/z) shell [7 ] .  In 
Fig. 7 the theoretical and experimental heat capacities are plotted. However, one should not directly compare the two, 
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FIGURE 6. Caloric curve for "Fe. 

since the theoretical calculations were performed using the state density, and the experimental heat capacity is obtained 
using the level density. The relation between the state and the level density is given by 

W ( E )  = C(2J + l)@, 4, (7) 

where W ( E )  is the state density, which includes all of the magnetic substates. Clearly, the theoretical and the 
experimental heat capacities have local enhancement at different temperatures, 0.7 MeV and 1.3 MeV, respectively. 
The saturation above this enhancement in the model calculations is an artifact of the finite model space. Thus, as the 
temperature increases, the nucleons cannot be scattered across high energies since there are not enough single-particle 
levels to excite. Therefore, the heat capacity would eventually turn over and go to zero at high temperatures. This effect 
is known as the Schottky anomaly in the heat capacity [ 151. 

The disagreement between the experimental and the theoretical heat capacities might be a result of the spin cut-off 
parameter. In order to deduce the density of levels of given angular momentum J at a given energy, one needs to know 
the spin cut-off parameter. The spin cut-off parameter is not known. Therefore, the experimental and the theoretical 
heat capacities are not directly comparable. 

J 

SUMMARY 

In summary, the level densities are extracted from the experimental primary y-ray matrix. The step structure in the level 
density is interpreted as pair breaking. The step structure observed experimentally should be supported by microscopic 
calculations. The thermodynamical properties in the 56Fe isotope are studied within the canonical ensemble. The 
discrepancy observed between the experimental and the theoretical heat capacity may be due to the uncertainty in the 
value of the spin cut-off parameter in 56Fe. 

The method to extract level density and the y-ray strength function has been applied earlier to several rare-earth 
nuclei. Here the method is extended to a lighter mass region. There have been other measurements to study 27,28Si 
[ 161, whose results are submitted, and several Mo isotopes. The analysis of the Mo isotopes is in progress. 
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